Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Contribution of different carbon sources to isoprene biosynthesis in poplar leaves.

Identifieur interne : 004297 ( Main/Exploration ); précédent : 004296; suivant : 004298

Contribution of different carbon sources to isoprene biosynthesis in poplar leaves.

Auteurs : Jörg-Peter Schnitzler [Allemagne] ; Martin Graus ; Jürgen Kreuzwieser ; Ulrike Heizmann ; Heinz Rennenberg ; Armin Wisthaler ; Armin Hansel

Source :

RBID : pubmed:15122010

Descripteurs français

English descriptors

Abstract

This study was performed to test if alternative carbon sources besides recently photosynthetically fixed CO2 are used for isoprene formation in the leaves of young poplar (Populus x canescens) trees. In a 13CO2 atmosphere under steady state conditions, only about 75% of isoprene became 13C labeled within minutes. A considerable part of the unlabeled carbon may be derived from xylem transported carbohydrates, as may be shown by feeding leaves with [U-13C]Glc. As a consequence of this treatment approximately 8% to 10% of the carbon emitted as isoprene was 13C labeled. In order to identify further carbon sources, poplar leaves were depleted of leaf internal carbon pools and the carbon pools were refilled with 13C labeled carbon by exposure to 13CO2. Results from this treatment showed that about 30% of isoprene carbon became 13C labeled, clearly suggesting that, in addition to xylem transported carbon and CO2, leaf internal carbon pools, e.g. starch, are used for isoprene formation. This use was even increased when net assimilation was reduced, for example by abscisic acid application. The data provide clear evidence of a dynamic exchange of carbon between different cellular precursors for isoprene biosynthesis, and an increasing importance of these alternative carbon pools under conditions of limited photosynthesis. Feeding [1,2-13C]Glc and [3-13C]Glc to leaves via the xylem suggested that alternative carbon sources are probably derived from cytosolic pyruvate/phosphoenolpyruvate equivalents and incorporated into isoprene according to the predicted cleavage of the 3-C position of pyruvate during the initial step of the plastidic deoxyxylulose-5-phosphate pathway.

DOI: 10.1104/pp.103.037374
PubMed: 15122010
PubMed Central: PMC429343


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Contribution of different carbon sources to isoprene biosynthesis in poplar leaves.</title>
<author>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forschungszentrum Karlsruhe GmbH Institut für Meteorologie und Klimaforschung, Atmosphärische Umweltforschung, D-82467 Garmisch-Partenkirchen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forschungszentrum Karlsruhe GmbH Institut für Meteorologie und Klimaforschung, Atmosphärische Umweltforschung, D-82467 Garmisch-Partenkirchen</wicri:regionArea>
<wicri:noRegion>82467 Garmisch-Partenkirchen</wicri:noRegion>
<wicri:noRegion>82467 Garmisch-Partenkirchen</wicri:noRegion>
<wicri:noRegion>D-82467 Garmisch-Partenkirchen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Graus, Martin" sort="Graus, Martin" uniqKey="Graus M" first="Martin" last="Graus">Martin Graus</name>
</author>
<author>
<name sortKey="Kreuzwieser, Jurgen" sort="Kreuzwieser, Jurgen" uniqKey="Kreuzwieser J" first="Jürgen" last="Kreuzwieser">Jürgen Kreuzwieser</name>
</author>
<author>
<name sortKey="Heizmann, Ulrike" sort="Heizmann, Ulrike" uniqKey="Heizmann U" first="Ulrike" last="Heizmann">Ulrike Heizmann</name>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</author>
<author>
<name sortKey="Wisthaler, Armin" sort="Wisthaler, Armin" uniqKey="Wisthaler A" first="Armin" last="Wisthaler">Armin Wisthaler</name>
</author>
<author>
<name sortKey="Hansel, Armin" sort="Hansel, Armin" uniqKey="Hansel A" first="Armin" last="Hansel">Armin Hansel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15122010</idno>
<idno type="pmid">15122010</idno>
<idno type="doi">10.1104/pp.103.037374</idno>
<idno type="pmc">PMC429343</idno>
<idno type="wicri:Area/Main/Corpus">004275</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004275</idno>
<idno type="wicri:Area/Main/Curation">004275</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004275</idno>
<idno type="wicri:Area/Main/Exploration">004275</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Contribution of different carbon sources to isoprene biosynthesis in poplar leaves.</title>
<author>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forschungszentrum Karlsruhe GmbH Institut für Meteorologie und Klimaforschung, Atmosphärische Umweltforschung, D-82467 Garmisch-Partenkirchen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forschungszentrum Karlsruhe GmbH Institut für Meteorologie und Klimaforschung, Atmosphärische Umweltforschung, D-82467 Garmisch-Partenkirchen</wicri:regionArea>
<wicri:noRegion>82467 Garmisch-Partenkirchen</wicri:noRegion>
<wicri:noRegion>82467 Garmisch-Partenkirchen</wicri:noRegion>
<wicri:noRegion>D-82467 Garmisch-Partenkirchen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Graus, Martin" sort="Graus, Martin" uniqKey="Graus M" first="Martin" last="Graus">Martin Graus</name>
</author>
<author>
<name sortKey="Kreuzwieser, Jurgen" sort="Kreuzwieser, Jurgen" uniqKey="Kreuzwieser J" first="Jürgen" last="Kreuzwieser">Jürgen Kreuzwieser</name>
</author>
<author>
<name sortKey="Heizmann, Ulrike" sort="Heizmann, Ulrike" uniqKey="Heizmann U" first="Ulrike" last="Heizmann">Ulrike Heizmann</name>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</author>
<author>
<name sortKey="Wisthaler, Armin" sort="Wisthaler, Armin" uniqKey="Wisthaler A" first="Armin" last="Wisthaler">Armin Wisthaler</name>
</author>
<author>
<name sortKey="Hansel, Armin" sort="Hansel, Armin" uniqKey="Hansel A" first="Armin" last="Hansel">Armin Hansel</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport (drug effects)</term>
<term>Butadienes (MeSH)</term>
<term>Carbon (metabolism)</term>
<term>Carbon (pharmacology)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Carbon Dioxide (pharmacology)</term>
<term>Carbon Isotopes (MeSH)</term>
<term>Glucose (metabolism)</term>
<term>Glucose (pharmacology)</term>
<term>Hemiterpenes (biosynthesis)</term>
<term>Pentanes (MeSH)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (drug effects)</term>
<term>Populus (metabolism)</term>
<term>Starch (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amidon (métabolisme)</term>
<term>Butadiènes (MeSH)</term>
<term>Carbone (métabolisme)</term>
<term>Carbone (pharmacologie)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Dioxyde de carbone (pharmacologie)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Glucose (métabolisme)</term>
<term>Glucose (pharmacologie)</term>
<term>Hémiterpènes (biosynthèse)</term>
<term>Isotopes du carbone (MeSH)</term>
<term>Pentanes (MeSH)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (métabolisme)</term>
<term>Transport biologique (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Hemiterpenes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Carbon Dioxide</term>
<term>Glucose</term>
<term>Starch</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Carbon</term>
<term>Carbon Dioxide</term>
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Butadienes</term>
<term>Carbon Isotopes</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Hémiterpènes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Biological Transport</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Transport biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Amidon</term>
<term>Carbone</term>
<term>Dioxyde de carbone</term>
<term>Feuilles de plante</term>
<term>Glucose</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Carbone</term>
<term>Dioxyde de carbone</term>
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Butadiènes</term>
<term>Isotopes du carbone</term>
<term>Pentanes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study was performed to test if alternative carbon sources besides recently photosynthetically fixed CO2 are used for isoprene formation in the leaves of young poplar (Populus x canescens) trees. In a 13CO2 atmosphere under steady state conditions, only about 75% of isoprene became 13C labeled within minutes. A considerable part of the unlabeled carbon may be derived from xylem transported carbohydrates, as may be shown by feeding leaves with [U-13C]Glc. As a consequence of this treatment approximately 8% to 10% of the carbon emitted as isoprene was 13C labeled. In order to identify further carbon sources, poplar leaves were depleted of leaf internal carbon pools and the carbon pools were refilled with 13C labeled carbon by exposure to 13CO2. Results from this treatment showed that about 30% of isoprene carbon became 13C labeled, clearly suggesting that, in addition to xylem transported carbon and CO2, leaf internal carbon pools, e.g. starch, are used for isoprene formation. This use was even increased when net assimilation was reduced, for example by abscisic acid application. The data provide clear evidence of a dynamic exchange of carbon between different cellular precursors for isoprene biosynthesis, and an increasing importance of these alternative carbon pools under conditions of limited photosynthesis. Feeding [1,2-13C]Glc and [3-13C]Glc to leaves via the xylem suggested that alternative carbon sources are probably derived from cytosolic pyruvate/phosphoenolpyruvate equivalents and incorporated into isoprene according to the predicted cleavage of the 3-C position of pyruvate during the initial step of the plastidic deoxyxylulose-5-phosphate pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15122010</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>10</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>135</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2004</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Contribution of different carbon sources to isoprene biosynthesis in poplar leaves.</ArticleTitle>
<Pagination>
<MedlinePgn>152-60</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>This study was performed to test if alternative carbon sources besides recently photosynthetically fixed CO2 are used for isoprene formation in the leaves of young poplar (Populus x canescens) trees. In a 13CO2 atmosphere under steady state conditions, only about 75% of isoprene became 13C labeled within minutes. A considerable part of the unlabeled carbon may be derived from xylem transported carbohydrates, as may be shown by feeding leaves with [U-13C]Glc. As a consequence of this treatment approximately 8% to 10% of the carbon emitted as isoprene was 13C labeled. In order to identify further carbon sources, poplar leaves were depleted of leaf internal carbon pools and the carbon pools were refilled with 13C labeled carbon by exposure to 13CO2. Results from this treatment showed that about 30% of isoprene carbon became 13C labeled, clearly suggesting that, in addition to xylem transported carbon and CO2, leaf internal carbon pools, e.g. starch, are used for isoprene formation. This use was even increased when net assimilation was reduced, for example by abscisic acid application. The data provide clear evidence of a dynamic exchange of carbon between different cellular precursors for isoprene biosynthesis, and an increasing importance of these alternative carbon pools under conditions of limited photosynthesis. Feeding [1,2-13C]Glc and [3-13C]Glc to leaves via the xylem suggested that alternative carbon sources are probably derived from cytosolic pyruvate/phosphoenolpyruvate equivalents and incorporated into isoprene according to the predicted cleavage of the 3-C position of pyruvate during the initial step of the plastidic deoxyxylulose-5-phosphate pathway.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schnitzler</LastName>
<ForeName>Jörg-Peter</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Forschungszentrum Karlsruhe GmbH Institut für Meteorologie und Klimaforschung, Atmosphärische Umweltforschung, D-82467 Garmisch-Partenkirchen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Graus</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kreuzwieser</LastName>
<ForeName>Jürgen</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Heizmann</LastName>
<ForeName>Ulrike</ForeName>
<Initials>U</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rennenberg</LastName>
<ForeName>Heinz</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wisthaler</LastName>
<ForeName>Armin</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hansel</LastName>
<ForeName>Armin</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>04</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-25-8</RegistryNumber>
<NameOfSubstance UI="D013213">Starch</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013213" MajorTopicYN="N">Starch</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15122010</ArticleId>
<ArticleId IdType="doi">10.1104/pp.103.037374</ArticleId>
<ArticleId IdType="pii">pp.103.037374</ArticleId>
<ArticleId IdType="pmc">PMC429343</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2001 Feb;6(2):78-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11173292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:407-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Jun;115(2):190-196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Apr;110(4):1317-1322</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Oct;215(6):894-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12355149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1727-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 May 22;256(5060):1157-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1317061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Jul;16(7):649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:27-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Mar;118(3):333-339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Sep;99(3-4):260-270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Sep 16;241(4872):1473-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3420404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Dec;118(4):1127-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847087</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Graus, Martin" sort="Graus, Martin" uniqKey="Graus M" first="Martin" last="Graus">Martin Graus</name>
<name sortKey="Hansel, Armin" sort="Hansel, Armin" uniqKey="Hansel A" first="Armin" last="Hansel">Armin Hansel</name>
<name sortKey="Heizmann, Ulrike" sort="Heizmann, Ulrike" uniqKey="Heizmann U" first="Ulrike" last="Heizmann">Ulrike Heizmann</name>
<name sortKey="Kreuzwieser, Jurgen" sort="Kreuzwieser, Jurgen" uniqKey="Kreuzwieser J" first="Jürgen" last="Kreuzwieser">Jürgen Kreuzwieser</name>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
<name sortKey="Wisthaler, Armin" sort="Wisthaler, Armin" uniqKey="Wisthaler A" first="Armin" last="Wisthaler">Armin Wisthaler</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004297 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004297 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15122010
   |texte=   Contribution of different carbon sources to isoprene biosynthesis in poplar leaves.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15122010" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020